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a b s t r a c t

The understanding of viscoelastic flows in many situations requires not only the steady
state solution of the governing equations, but also its sensitivity to small perturbations.
Linear stability analysis leads to a generalized eigenvalue problem (GEVP), whose numer-
ical analysis may be challenging, even for Newtonian liquids, because the incompressibility
constraint creates singularities that lead to non-physical eigenvalues at infinity. For visco-
elastic flows, the difficulties increase due to the presence of continuous spectrum, related
to the constitutive equations.

The Couette flow of upper convected Maxwell (UCM) liquids has been used as a case
study of the stability of viscoelastic flows. The spectrum consists of two discrete eigen-
values and a continuous segment with real part equal to �1/We (We is the Weissenberg
number). Most of the approximations in the literature were obtained using spectral expan-
sions. The eigenvalues close to the continuous part of the spectrum show very slow conver-
gence.

In this work, the linear stability of Couette flow of a UCM liquid is studied using a finite
element method. A new procedure to eliminate the eigenvalues at infinity from the GEVP is
proposed. The procedure takes advantage of the structure of the matrices involved and
avoids the computational overhead of the usual mapping techniques. The GEVP is trans-
formed into a non-degenerate GEVP of dimension five times smaller. The computed eigen-
functions related to the continuous spectrum are in good agreement with the analytic
solutions obtained by Graham [M.D. Graham, Effect of axial flow on viscoelastic Taylor–
Couette instability, J. Fluid Mech. 360 (1998) 341].

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Linear stability analysis of incompressible flows is used in many practical examples to determine the parameters at which
the flow becomes unstable. It is an important design tool for many manufacturing processes, where a steady state flow is
crucial for uniform product quality.

The hydrodynamic stability of a laminar flow is determined by tracking the effect of a perturbation of the flow. The
discretization of the system of linear differential equations that describe the amplitude of the perturbations c and its rate
of growth r leads to a non-Hermitian, generalized eigenvalue problem (GEVP) of the form
Jc ¼ rMc: ð1Þ
The matrices J and M are usually called the Jacobian and mass matrices.
. All rights reserved.
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The challenges of linear stability analyses of viscoelastic flows are many. The presence of elastic stress boundary layers
requires a refined mesh in some regions of the flow, leading to large matrices. The differential models used to describe the
viscoelastic behavior of liquids lead to singularities. In contrast to Newtonian flows, the related linear eigenvalue problem
may contain continuous spectrum in addition to discrete eigenvalues.

These difficulties are already present in the stability analysis of simple Couette flow of an upper convected Maxwell
(UCM) liquid. In their theoretical analysis of a simple geometry, Gorodtsov and Leonov [1] showed that the related spectrum
is composed by the so called Gorodtsov–Leonov eigenvalues, and an interval in the complex plane given by �1=We� iaU,
where We is the Weissenberg number, a is the wavenumber of the perturbation along the flow direction and U is the wall
velocity. The literature contains a number of texts dedicated to the numerical confirmation of their description, along with
generalizations to different rectilinear flows, such as Poiseuille and multilayered flows, together with more elaborate con-
stitutive models. Important contributions can be found in [2–6,8]. In these analysis, the flow perturbation along the
cross-stream direction is written in terms of the streamfunction and spectral methods are then used to solve the equations.

Previous numerical experiments recover very well the Gorodtsov–Leonov eigenvalues and approximate the continuous
spectrum by oval-shaped figures. The width of the oval figure decreases for denser discretizations, but convergence is slow,
as seen in [3–5]. As commented by several authors, the inaccurate approximation of the continuous spectrum and the slow
convergence of these eigenmodes are related to the singular nature of the eigenfunction. There are two known families of
eigenfunctions related to the continuous spectrum of this flow. Graham [10] obtained two-dimensional subspaces of solu-
tions that have non-zero velocity field and non-integrable singular stress fields. This is consistent with the presence of ovals
in numerical experiments. Kupferman [11] found another family of distribution-valued eigenfunctions for the stress field,
consisting of delta functions and their derivatives, which do not perturb the velocity field. He also considered the effect
of the finite-difference scheme on the numerical approximation of the continuous spectrum. At high Weissenberg numbers,
the real part of the continuous spectrum is a small negative number, whereas their approximations by the oval may cross the
imaginary axis, leading to incorrect predictions about the stability of the flow.

Solving the GEVP (1) may be difficult even for viscous flows. The discretization describing the perturbed fields leads to
large matrices, frequently ruling out the calculation of the full spectrum. Only the leading eigenvalues, those with the largest
real part, are calculated, usually by iterative methods. Moreover, the mass matrix M, associated to the transient terms of the
governing equations, is singular because the mass conservation equation of incompressible flows does not have a transient
term. This singularity gives rise to (theoretical) eigenvalues at infinity, which manifest in computations as large, but finite,
numbers.

Large eigenvalues have to be tamed: naive iterative methods favor the eigenvalues with the largest modulus, not those
with the largest real part. To circumvent this difficulty, a common procedure is to use a shift-and-invert transformation,
mapping infinity to zero, as done by Sureshkumar and Beris [3]. Iterative methods used to solve the transformed problem
will favor the eigenvalues closest to the shift parameter, not the leading ones. Christodoulou and Scriven [12] used approx-
imately exponential preconditioning by rational transformation to overcome these difficulties. In this case, the eigenvalues
of the transformed problem are the exponentials of the original eigenvalues, and thus eigenvalues of largest real part in the
original problem give rise to eigenvalues of largest modulus in the transformed problem, and standard iteration techniques,
like the many variations of Arnoldi’s method, may be considered. The preconditioning step is computationally expensive.
Navarro et al. [7] developed an efficient method based on a modified Cayley transformation followed by another transfor-
mation for the eigenvalues at infinity to solve the generalized eigenvalue problem that describes the linear stability of a fluid
heated non-uniformly from bellow. However, as they stated, some care needs to be taken since not all the eigenvalues at
infinity are removed.

Taking a different approach, Arora and Sureshkumar [8] accurately captured the spectrum in the purely elastic limit for an
Oldroyd-B liquid, with substantial reduction in CPU time and memory requirements. Their algorithm, however, can only be
applied to creeping flows (i.e., vanishing Reynolds number) and constitutive models with a polymeric viscosity term. In par-
ticular, it cannot be applied to a UCM liquid. To avoid these limitations, Sureshkumar [9] presented his compressible visco-
elastic formulation (CVF), which is well suited for the linear stability analysis of viscoelastic flows. The incompressible
eigensolutions can be recovered from CVF in the limit of small compressibility. In essence, CVF is a penalty-formulation
to remove the singularity of the mass matrix.

Valerio et al. [13] showed that the GEVP resulting from linear stability analysis of viscous flows may be reduced to a smal-
ler non-singular GEVP. The linear stability analysis is formulated in terms of the primitive variables, namely, pressure, stress
tensor and velocity of the flow. The differential equations are discretized using finite elements. In this work, an extension of
this procedure is proposed for the Couette flow of an UCM liquid. By keeping track of the sources of eigenvalues at infinity
combined with a detailed analysis of the structure of the mass and Jacobian matrices, eigenvalues at infinity are eliminated
by an algebraic procedure. As a consequence, the original (GEVP) becomes five times smaller and the new mass matrix is
non-singular. The numerical computation of the spectrum is very satisfactory, with substantial savings in memory require-
ments and CPU time. The discretization of the continuous spectrum gives rise to a peculiar picture, which at first sight sug-
gests three different arcs of eigenvalues, the middle one lying on top of the continuous spectrum. Careful examination,
however, shows that only two discrete eigenvalues appear for a fixed imaginary part: one on the central arc, the other
alternating from left to right. The related eigenfunctions are in good agreement with the analytical solutions presented
by Graham. This peculiar pattern seems due to the choice of element discretization: eigenfunctions and eigenvalues are
significatively related to the underlying mesh and basis functions.
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2. Linear stability analysis: finite elements discretization

The velocity v and pressure p fields of steady state, incompressible, creeping flow are governed by the continuity and
momentum equations
r � v ¼ 0; �rpþr � s ¼ 0:
The extra-stress tensor is s. In order to compare the predictions with previous work in the literature, the upper convected
Maxwell (UCM) constitutive equation was chosen to represent the viscoelastic behavior of the liquid
sþWesð1Þ ¼ _c;
where sð1Þ ¼ ðv � rÞs� ðrvÞs� sðrvÞT is the upper convected derivative and _c ¼ ðrv þrvTÞ is the rate-of-strain tensor. The
Weissenberg number is We � Vk=L and k is the relaxation time of the liquid. The gradient of the velocity is given by the ma-
trix rv ¼ ov i

oxj
eiej.

Geometry and boundary conditions are shown in Fig. 1. Liquid flows between two parallel plates located at y ¼ �1 that
are moving with velocity U ¼ �1. Gorodtsov and Leonov [1] considered a similar geometry. The steady state solution of this
problem is given by
v0 ¼ ðy;0;0Þ; p0 ¼ 0 and s0 ¼
2We 1 0

1 0 0
0 0 0

2
64

3
75:
To determine its linear stability, we add perturbations to the fields above,
vðx; tÞ ¼ v0ðxÞ þ � v0ðyÞeiaxþrt;

pðx; tÞ ¼ p0ðxÞ þ � p0ðyÞeiaxþrt ;

sðx; tÞ ¼ s0ðxÞ þ � s0ðyÞeiaxþrt:
The fields v0; p0 and s0 describe amplitudes and r is the growth factor of the perturbation. The wave number a along the flow
direction is given; in applications, stability is considered for a range of values. As usual, the sign of RðrÞ, the real part of r,
determines the stability of the flow. Thus, v, p and s satisfy
r � v ¼ 0; �rpþr � s ¼ 0; sþWe sð1Þ ¼ _c; ð2Þ
where now sð1Þ ¼ os
ot þ ðv � rÞs� ðrvÞs� sðrvÞT is the upper convected derivative with an additional transient term.

Following the usual procedure, we insert in the system (2) the expressions for the perturbed fields and neglect terms of
order Oð�2Þ, on our way to compute the sensitivity matrix related to the linear stability of the flow. To simplify notation, we
drop primes: the perturbed fields will be represented by p; s, and v. We list the three different types of equations: for con-
tinuity, for the UCM constitutive model and, finally, for momentum conservation:
iauþ dv
dy
¼ 0;

ðrWeþ SÞs11 � 2Wes12 � ð4We2 þ 2Þiau� 2We
du
dy
¼ 0;

ðrWeþ SÞs12 �Wes22 �Weiau� du
dy
� ð2We2 þ 1Þiav �We

dv
dy
¼ 0;

ðrWeþ SÞs22 � 2We
du
dy
� 2

dv
dy
¼ 0;

� iapþ ds12

dy
þ ias11 ¼ 0; � dp

dy
þ ds22

dy
þ ias12 ¼ 0;

ð3Þ
Fig. 1. Configuration of plane Couette flow.
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where S ¼ 1þ iayWe and, at the boundary, uðy ¼ �1Þ ¼ 0;vðy ¼ �1Þ ¼ 0. The perturbed fields and the growth rate r of the
perturbation are taken as unknowns.

We discretized system (3) by applying Galerkin’s weighted residual method. As a first try, we used a common set of
basis functions for steady state viscoelastic flows: piecewise quadratic continuous functions to expand the velocity field,
piecewise linear continuous functions to expand the stress field and piecewise linear discontinuous functions to expand
the pressure field. The computed eigenvalues (evaluated with QZ method) at We ¼ 10 and a ¼ 1 did not approximate
well both the discrete ð�0:056þ�i0:950Þ and the continuous part of the spectra (line segment �0:1� i), as it is clear
in Fig. 2a.

Modifications of system (2) have been proposed in recent years with the goal of stabilizing the numerics to compute stea-
dy state flows of viscoelastic liquids. Szady et al. [14] suggest an additional variable G to represent the velocity gradient as an
independent field. For an incompressible liquid, the velocity gradient should be traceless, since r � v ¼ 0. Pasquali and Scri-
ven [15] enforce this by setting
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G�rv þ ðr � vÞI
trðIÞ ¼ 0:
The perturbed fields fields, now including the interpolated velocity gradient Gðx; tÞ ¼ G0ðxÞ þ �G0ðyÞeiaxþrt , satisfy
r � v ¼ 0; �rpþr � s ¼ 0;

sþWe
os

ot
þ ðv � rÞs� ðGÞs� sðGÞT

� �
¼ ðGþ GTÞ;

G�rv þ ðr � vÞI
trðIÞ ¼ 0:

ð4Þ
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Computed eigenvalues as a function of the formulations and set of basis functions used: (a) original formulation and continuous linear functions for
ss field; (b) modified formulation and continuous linear functions for the stress and interpolated velocity gradient fields; (c) original formulation

continuous linear functions for the stress and interpolated velocity gradient fields; and (d) modified formulation and discontinuous linear functions
stress and interpolated velocity gradient fields.
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As before, we insert in the system above the expressions for the perturbed fields and neglect terms of orderOð�2Þ. To simplify
notation, we drop primes: the perturbed fields will be represented by p; s, v and G. The amplitude of the perturbations and
their growth factor satisfy
iauþ dv
dy
¼ 0;

ðrWeþ SÞs11 � 2Wes12 � ð4We2 þ 2ÞG11 � 2WeG12 ¼ 0;

ðrWeþ SÞs12 �Wes22 �WeG11 � G12 � ð2We2 þ 1ÞG21 �WeG22 ¼ 0;
ðrWeþ SÞs22 � 2WeG12 � 2G22 ¼ 0;

� iapþ ds12

dy
þ ias11 ¼ 0; � dp

dy
þ ds22

dy
þ ias12 ¼ 0;

� 1
2

iauþ 1
2

dv
dy
þ G11 ¼ 0; � du

dy
þ G12 ¼ 0;

� iav þ G21 ¼ 0;
1
2

iau� 1
2

dv
dy
þ G22 ¼ 0;

ð5Þ
where S ¼ 1þ iayWe and, at the boundary, uðy ¼ �1Þ ¼ 0;vðy ¼ �1Þ ¼ 0.
We expand the unknown fields by the same set of basis functions used before, but now including an expansion for the

interpolated velocity gradient field: piecewise quadratic continuous functions to expand the velocity field, piecewise linear
continuous functions to expand the stress and velocity gradient fields and piecewise linear discontinuous functions to ex-
pand the pressure field. Again, the computed eigenvalues (evaluated with QZ method) did not approximate well both the
discrete and the continuous part of the spectra, as it is clear in Fig. 2b.

Realizing that a discontinuous stress field may satisfy the governing equations, we use piecewise linear discontinuous
basis functions to expand the stress and velocity gradient fields for both systems of equations (3) and (5), i.e. with and with-
out the interpolated velocity gradient field. The computed eigenvalues are shown in Fig. 2-c-d. The results that approximate
well the analytical solution were those obtained with the modified system of equations, where the velocity gradient is trea-
ted as an independent field, and linear discontinuous basis functions were used to expand both the stress and velocity gra-
dient fields.

In summary, the weighting functions /j used for the momentum equations are piecewise Lagrangian quadratic polyno-
mials. For the continuity equation, constitutive equations and interpolated velocity gradient equations, we take piecewise
linear discontinuous polynomials vj;wj and uj. Each perturbed field is approximated by a linear combination of the same
basis functions
ph ¼
Xm

k¼1

Pk vk; sh ¼
s11h s12h

s12h s22h

� �
¼

Pm
k¼1

T11kwk

Pm
k¼1

T12kwk

Pm
k¼1

T12kwk

Pm
k¼1

T22kwk

2
6664

3
7775;

vh ¼
uh

vh

� �
¼

Pn
k¼1

Uk/k

Pn
k¼1

Vk/k

2
6664

3
7775; Gh ¼

G11h G12h

G21h G22h

� �
¼

Pm
k¼1
G11kuk

Pm
k¼1
G12kuk

Pm
k¼1
G12kuk

Pm
k¼1
G22kuk

2
6664

3
7775:
After integration by parts, the weighted residuals are
Rj
c ¼

Z 1

�1
iauh þ

dvh

dy

� �
vj dy;

Rj
s11
¼ r

Z 1

�1
ðWe s11hÞwj dyþ

Z 1

�1
ðSs11h � 2Wes12h � ð4We2 þ 2ÞG11h � 2WeG12hÞwj dy;

Rj
s12
¼ r

Z 1

�1
ðWe s12hÞwj dyþ

Z 1

�1
ðSs12h �Weðs22h þ G11hÞ � G12h � ð2We2 þ 1ÞG21h �WeG22hÞwj dy;

Rj
s22
¼ r

Z 1

�1
ðWe s22hÞwj dyþ

Z 1

�1
ðSs22h � 2WeG12h � 2G22hÞwj dy;

Rj
mx ¼

Z 1

�1
ðiaph � ias11hÞ/j dyþ

Z 1

�1
ðs12hÞ

d/j

dy
dy;



Fig. 3. Numbering scheme for elements, nodes and degrees of freedom for a mesh consisting of four finite elements. The coefficients C1–C8, C9–C32, C33–
C50, C51–C82 correspond to pressure, stress tensor, velocity and velocity gradient. The boundary conditions are applied to the velocity degrees of freedom
C33, C40, C42, C49.
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Rj
my ¼

Z 1

�1
ðias12hÞ/j dyþ

Z 1

�1
ðph � s22hÞ

d/j

dy
dy;

Rj
G11
¼
Z 1

�1
�1

2
iauh þ

1
2

dvh

dy
þ G11h

� �
uj dy;

Rj
G12
¼
Z 1

�1
�duh

dy
þ G12h

� �
uj dy; Rj

G21
¼
Z 1

�1
ð�iavh þ G21hÞuj dy;

Rj
G22
¼
Z 1

�1

1
2

iauh �
1
2

dvh

dy
þ G22h

� �
uj dy:
The stress field may be expanded in terms of discontinuous basis function without the need to take into account jumps be-
tween elements. In Couette flow, the steady state velocity only varies in the direction perpendicular to the flow and the stea-
dy state stress is constant. The Oð�Þ terms of the expansion around the steady solution only have derivatives of stress with
respect to the y coordinate in the momentum equations (see Eq. (5)), which are eliminated after the integration by parts of
the weighted residuals.

The number of algebraic equations is 2nþ 8m, where n is the number of basis functions /j and m is the number of basis
functions of the form nj;wj;uj (notice that s and G have respectively 3 and 4 independent entries). For N elements, n ¼ 2N þ 1
and m ¼ 2N, as shown in Fig. 3. Thus, the total number of degrees of freedom of the discretization is 2nþ 8m ¼ 20N þ 2.

In vector form, the linear stability problem boils down to solving RðcÞ ¼ 0, where the column vector c consists of the coef-
ficients of the finite element perturbations and R is the column vector of weighted residual equations:
c ¼ ½P1; . . . ; Pm; T111 ; . . . ; T11m ; T121 ; . . . ; T12m ; T221 ; . . . ; T22m ;U1; . . . ;Un;V1; . . . ;Vn;G111 ; . . . ;G11m ;G121 ; . . . ;G12m ;G211 ; . . . ;

G21m ;G221 ; . . . ;G22m �
T
;

R ¼ ½R1
c ; . . . ;Rm

c ;R
1
s11
; . . . ;Rm

s11
;R1

s12
; . . . ;Rm

s12
;R1

s22
; . . . ;Rm

s22
;R1

mx; . . . ;Rn
mx;R

1
my; . . . ;Rn

my;R
1
G11
; . . . ;Rm

G11
;R1

G12
; . . . ;Rm

G12
;

R1
G21
; . . . ;Rm

G21
;R1

G22
; . . . ;Rm

G22
�T :
As usual, the sensitivity matrix A ¼ oR
oc is the linear part of the expansion of R at c ¼ 0, and we search for vectors w in its ker-

nel, Aw ¼ 0. Splitting A according to the growth rate r;A ¼ J� rM, gives rise to the Jacobian matrix J and the mass matrix M.
We are thus led to the generalized, non-Hermitian eigenproblem (GEVP) Jc ¼ rMc, Eq. (1) of the introduction.
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Both M and J partition naturally in a 4� 4 block structure with square blocks along the diagonal. Many such blocks are
trivially zero. For example, the only non-zero block in the mass matrix M is M22, containing the derivatives of the entries Rj

s‘k
with respect to the variables sj

‘k. Keeping track of variable dependencies in a similar fashion, one is led to the configurations
below:
ð6Þ
The polynomial associated to the GEVP (1), then, is of degree at most 6N, a number much smaller than 20N þ 2, the dimen-
sion of the full matrix A. The 14N þ 2 missing dimensions are related to the eigenvalues at infinity. Indeed, in a nutshell, per-
turbations of the mass matrix, e.g. M� ¼ Mþ �, have large eigenvalues in the spectrum, which go to infinity as � goes to 0.
Truncation errors in the numerical methods used to calculate the spectrum of the GEVP give rise to perturbations of the mass
matrix and lead to the appearance of very large eigenvalues. With the method of the following section, we count the eigen-
values at infinity correctly (there are many more), and, by eliminating them, we may transform the GEVP into a smaller, non-
degenerate one.

It is important to note that the method that is presented next can be applied on the formulation with or without the
interpolated velocity gradient field. However, the matrices transformations will not be exactly the same because they de-
pend on the structure of the matrices involved, which is a direct function of the relationship between equations and
variables.

Moreover, the fact that the problem used here to test the procedure is a unidirectional Couette flow does not bring any
particularity to the matrices’ structure, which would be very similar for a two-dimensional creeping flow. The only difference
is the size and structure of each individual block, which is a function of the finite element mesh and basis functions used to
expand each field. Consequently, the method presented in the following section can be used with different sets of basis func-
tions and can be easily generalized to two-dimensional flows. We presented for the particular case of a Couette flow of an
UCM liquid to make the matrix transformations used more clear and to be able to compare the computed spectrum to those
presented in the literature.
3. Getting rid of eigenvalues at infinity

Valerio et al. [13] showed that the GEVP resulting from linear stability analysis of viscous flow may be reduced, by a se-
quence of operations in the spirit of a partial Gaussian elimination, to a smaller GEVP with spectrum equal to the finite por-
tion of the spectrum of the original GEVP. The approach was used to compute the spectrum of the Couette flow of a
Newtonian liquid at moderate Reynolds number, leading to sparse matrices three times smaller, and numerical algorithms
with a speed-up factor of 35. In this section, we show that a similar approach can be used for viscoelastic flows, with even
larger gains.

The (generalized) eigenvalues r of the GEVP represented in Eq. (1) are the roots of the characteristic polynomial
pðrÞ � detðAÞ � detðJ� rMÞ. Said differently, we are interested in the values of r for which the homogeneous system
ðJ� rMÞc ¼ 0 has a non-trivial solution. Thus, if one replaces both J and M by matrices eJ and fM, the GEVP’s Jc ¼ rMc andeJ~c ¼ rfM~c have the same eigenvalues if the homogeneous systems ðeJ � rfMÞ~c ¼ 0 and ðJ� rMÞc ¼ 0 have a non-trivial solu-

tion for the same values of r. More concretely, consider multiplications eJ ¼ XJY and fM ¼ XMY of both J and M by invertible
matrices X and Y independent of r. The matrices X and Y might arise while solving the homogeneous system ðJ� rMÞc ¼ 0
with a two-sided Gaussian elimination, in the sense that row and column elementary operations are allowed. Clearly, the
solutions of the systems ðeJ � rfMÞ~c ¼ 0 and ðJ� rMÞc ¼ 0 are related by Y~c ¼ c, so it is algebraically simple to translate be-
tween (generalized) eigenvectors of both problems.

The matrix structure is of essence here, and an example with only N ¼ 4 finite elements is shown in Fig. 4: the labelling of
entries follows Fig. 3. In this case, there are 20N þ 2 ¼ 82 degrees of freedom. The equations associated to the Dirichlet
boundary conditions correspond to rows 33, 40, 42 and 49. By inspection, on each such row, the only non-zero entry is
the diagonal position, equal to 1. Thus, without changes in the polynomial pðrÞ, one may remove four rows and columns
of A, obtaining the matrix Ab ¼ ðJb � rMbÞ, which in general is of dimension 20N � 2.

We repartition Ab, by fitting into the same block the first two blocks of rows and columns. For the new partition, shown in
Eq. (7), A11b and A33b are squares of the same dimension 8N



Fig. 4. Left: the non-zero entries of A, N ¼ 4. Right: Ab , obtained by removing 4 rows and columns of A.
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ð7Þ
On Ab, only the block A11b has any contribution from the mass matrix and consequently depends on the growth factor r and
on the Wessenberg number We. The Jacobian matrix J and Jb are simultaneously invertible or not, and invertibility happens
generically. It breaks down at turning points of the solution path constructed along increasing We. In other words, for a given
flow there are isolated values of We at which J (or Jb) may become singular. The triple ð0 A32b DÞ is formed by the last 8N
rows of Jb and does not depend on We. These rows are always linearly independent, otherwise the square matrix Jb would
have been singular for all values of We. Thus, either the submatrix D is invertible or there must be a permutation of the last
12N � 2 columns of Jb for which the bottom 8N � 8N block is invertible. For the Couette flow of the UCM liquid, D is (invert-
ible) diagonal. Thus, the block A32b can be eliminated by performing elementary operations on columns, yielding eA:
The modified block is evaluated as eA12 ¼ A12b � A13bD�1A32b.
The characteristic polynomial p1ðrÞ of eA is
p1ðrÞ ¼ detðeAÞ ¼ detðAbÞdetðTrÞ ¼ detðAbÞ ¼ pðrÞ:
Again, eA and Ab have the same eigenvalues. Now, making use of the special form of eA, write
p1ðrÞ ¼ detðeAÞ ¼ detðDÞdetðBeAÞ ¼ j1p2ðrÞ, where D is an invertible diagonal matrix independent of r; BeA is the 2� 2 top

block submatrix of eA and p2ðrÞ ¼ detðBeAÞ. Thus, the eigenvalues of BeA are the same as the finite eigenvalues of Ab. For

N ¼ 4, eA is shown in Fig. 5.
We consider a final partition of BeA , shown below. This time, we mix variables pertaining to different fields. We now

use corner square blocks (independent of r) to perform elementary operations. The case N ¼ 4 is displayed on the right
side of Fig. 5. The argument which showed that the Jacobian matrix is generally non-singular implies also that the
4N � 2 rows and columns of the triples ðBeA31

;BeA32
;0Þ and ðBeA13

;BeA23
;0ÞT are linearly independent. Again, there are per-

mutations on the last rows and columns that give rise to invertible corner blocks: for the Couette flow no permutations
are necessary



Fig. 5. eA ¼ AbTr and BeA appropriately partitioned, N ¼ 4.
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The next step should be clear: set
where F‘ and Fr are block elementary matrices. Both are partitioned like BeA , with identity blocks along the diagonal and each
one has a unique off-diagonal non-zero block: for F‘, its (21) block equals �BeA23

B�1eA13
and for Fr, its (12) block is �B�1eA31

BeA32
. As

explained bellow, the only block needed to compute the finite eigenvalues is the central block gBeA22
. It is computed as
Fig. 6. The matrix fBeA ¼ F‘BeA Fr ;N ¼ 4.
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gBeA22
¼ �BeA23

B�1eA13
ð�BeA11

B�1eA31
BeA32

þ BeA12
Þ � BeA21

B�1eA31
BeA32

þ BeA22
:

The structure of the matrix fBeA is shown in Fig. 6 for N ¼ 4. The central block, gBeA22
is a very sparse matrix for large N.

For p3ðrÞ ¼ detðfBeA Þ we still have p3ðrÞ ¼ p2ðrÞ ¼ detðBeAÞ, but more is true, since fBeA is non-singular, the blocks BeA13
and

BeA31
are invertible matrices independent of r : p3ðrÞ and detðgBeA22

ðrÞÞ have the same finite roots, which are the same as the

finite roots of pðrÞ, the generalized eigenvalues of the original stability problem.

Now, generically, detðgBeA22
ðrÞÞ is of degree 4N þ 2, the dimension of the block gBeA22

ðrÞ: the original GEVP of dimension

20N þ 2 has been reduced to a GEVP of dimension 4N þ 2; ðgJeA22
� r gMeA22

Þd ¼ 0, where the matrix gMeA22
is (generically) invert-

ible: all the eigenvalues are now finite. In principle, the problem may be reduced to a standard eigenvalue problem and the
complete physically relevant spectrum can be evaluated by solving a regular GEVP that is approximately 1/5 of the size of the
original GEVP.

We now keep track of the transformations induced on the generalized eigenvectors by the operations above. Start with a
vector c satisfying Ac ¼ 0 associated to a generalized eigenvalue r. The solution cb of the system Abcb ¼ 0 (for the same r) is
obtained from c by removing the four coordinates equal to 0 at the entries related to the Dirichlet boundary conditions. The
solution of eA~c ¼ 0 solves Tr~c ¼ cb, and the inverse of Tr differs from Tr by an overall change of sign in the (3,2)-block.

We now relate the non-trivial solutions of BeA b ¼ 0 to ~c ¼ ð~c1; ~c2; ~c3Þt. Here, ~c is partitioned in accordance to the block
structure of eA. The system eA~c ¼ 0 gives
eA11 ~c1 þ eA12 ~c2 þ eA13 ~c3 ¼ 0; eA21 ~c1 ¼ 0; D ~c3 ¼ 0:
Since D is invertible, ~c3 ¼ 0. The first equations then imply b ¼ ð~c1; ~c2Þt.
Use fBeA ¼ F‘BeA Fr and the assumption that F‘ is invertible to conclude that the solution ~b of fBeA ~b ¼ 0 satisfies Fr

~b ¼ b. We

are left with relating ~b with the solution d of gBeA22
d ¼ 0. Now, partition ~b ¼ ð~b1;

~b2;
~b3Þt and write fBeA ~b ¼ 0 in block form.

Assuming the invertibility of BeA31
and BeA13

, it is easy to see, sequentially, that ~b1 ¼ 0; ~b2 is an eigenvector of gBeA22
(and hence,

generically, one may take without loss ~b2 ¼ d) and finally ~b3 ¼ �B�1eA13

gBeA12
d. The upshot is that from the eigenvector d of the

reduced GEVP one may retrieve the eigenvector related to the same r of the original stability problem.

4. Numerical results

We compare the results obtained with our method with data available in the literature. The calculations were performed
using We ¼ 10 and a ¼ 1, the same parameters used by Sureshkumar [9].

First, we perform an internal validation. The results of the LAPACK routine ZGEEV for the reduced and the original GEVP
on a mesh of N ¼ 60 elements essentially agreed to full numerical precision (eight digits). Indeed, there are no approxima-
tions in the reduced problem: it only takes advantage of the structure of the matrices. The dimensions of the original eigen-
problem is 20N þ 2 ¼ 1202. The reduced matrix, instead, has dimension 4N þ 2 ¼ 242: this is general – dimensions are in the
proportion of 5 to 1. For eigenvectors, the agreement is also excellent.
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Fig. 7. Spectrum of plane Couette flow UCM liquid with We ¼ 10 and a ¼ 1, for N ¼ 125; 500 and 800 elements.



Table 1
CPU time in seconds, for the original and reduced GEVP’s.

N 20N þ 2 4N þ 2 torig tred torig=tred

60 1202 242 140 3.1 45
100 2002 402 629 13 48
125 2502 502 1252 21 59
150 3002 602 – 43.6 –
200 4002 802 – 85.8 –
300 6002 1202 – 254.3 –
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The approximate spectrum obtained by the Galerkin discretization is shown in Fig. 7 for three different meshes with
N ¼ 125, 500 and 800 elements. It contains the two Gorodstov-Leonov modes and a set of eigenvalues approximating the
continuous part of the true spectrum. The computed GL modes are essentially the same starting from N ¼ 125 elements:
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Fig. 8. Modulus of the transversal velocity, pressure and normal component of the stress tensor along the flow direction related to the bottom GL-mode
rGL ¼ �0:0550784� 0:9504327i.
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the relative deviation comparing results for N ¼ 125 and N ¼ 500 is 10�6. The values agree well with those obtained by
Sureshkumar [9] using streamfunction formulation and a spectral method.

As in the spectral method predictions of Sureshkumar [9] and Wilson et al. [4], the approximation of the continuous spec-
trum is not precise: for each fixed choice of N, we identified what looks like three lines of eigenvalues close to the continuous
spectrum. One such line – not located in the quoted references – lie near the spectrum related to the known analytical solu-
tion, the line segment �1=We� ia ¼ �0:1� i. The computed eigenvalues approximating this segment have their real part
equal to �1=We ¼ �0:1 with an error of �10�7. The imaginary parts are uniformly distributed from �0.99853 to 0.99853.
The number of such eigenvalues is equal to 2N � 1. The other two lines of eigenvalues form an oval around the analytical
solution and are similar to those identified by [9,4]. As in [9,4], the oval slowly converges to the analytical solution. With
800 elements, the relative error of the approximations to the continuous part of the spectrum is less than 4%.
—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 1
—0.02

—0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Eigenfunctions

v

  σ = —0.1166 + 0.6000i

Re(v)
Imag(v)

—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 1
—0.5

0

0.5
Eigenfunctions

R
e(

Tx
x)

—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 1
—5

0

5
x 10—3

R
e(

Tx
y)

  σ =  —0.1166  + 0.6000i 

—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 1
—5

0

5

10
x 10—5

R
e(

Ty
y)

Fig. 10. Eigenfunctions associated with eigenvalue A, indicated in Fig. 9: (a) vertical velocity and (b) stress components.
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For different values of N, Table 1 gives the CPU time required to solve both the original and the reduced GEVP’s. The latter
includes the time required to obtain the reduced GEVP. The speed-up factor is approximately equal to 50. For N P 150, soft-
ware memory was not enough to solve the original GEVP.

Eigenvectors have coordinates of three different natures: velocity, pressure and stress. The eigenvector of the bottom GL
mode is shown in Fig. 8. The absolute values of the transversal velocity and pressure are smooth, whereas the absolute value
of the (1,1) entry of the stress tensor field presents a peak, with location dependent on the imaginary part of the GL mode.

We now focus on the continuous part of the spectrum, the interval of eigenvalues with real part �1=We ¼ �0:1. Our
numerical results indicate that each eigenvalue in the interval gives rise to two eigenvalues of the discrete problem, one with
the same real part �0.1 and the other oscillating from right to left, according to parity. Fig. 9 sketches the discrete eigen-
values near �0:1þ 0:6i for N ¼ 125. The number of eigenvalues with real part less than �0.1 is equal to the number of nodes
located on element boundaries. The imaginary part of each such eigenvalue is in good agreement with a node coordinate.
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Fig. 11. Eigenfunctions associated with eigenvalue B, indicated in Fig. 9: (a) vertical velocity and (b) stress components.
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Fig. 12. Eigenfunctions associated with eigenvalue C, indicated in Fig. 9: (a) vertical velocity and (b) stress components.
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Similarly, the number of eigenvalues with real part equal to �0.1 equals the number of nodes of the mesh and the imaginary
part of each eigenvalue is close to the coordinate of one such node. Finally, there are as many eigenvalues with real part
greater than �0.1 as elements, and its imaginary parts agree with the coordinate of the middle node of each element.

The eigenfunctions associated with the eigenvalues marked as A and B in Fig. 9 are presented in Figs. 10 and 11. The ver-
tical velocity and stress fields behave like the analytical solution obtained by Graham [10]. More precisely, Graham’s analytic
solutions provide a two-dimensional subspace of eigenfunctions for each point in the continuous spectrum: our computa-
tions obtain approximations of elements in these subspaces. All the stress components are singular at y ¼ 0:6. Also, as ob-
served by Graham, the computed stress components are such that jTxxj 	 jTxyj 	 jTyyj and the region around y ¼ 0:6 affected
by the singular behavior is larger for the Tyy field. Both observations are consistent with the analytical singularity strength of
each stress component.
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Fig. 13. Eigenfunctions associated with eigenvalue D, indicated in Fig. 9: (a) vertical velocity and (b) stress components.
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The eigenfunctions associated with the eigenvalues C and D in Fig. 9 are presented in Figs.12 and 13. The corresponding
eigenfunctions are not as smooth as those associated with eigenvalues A and B. Both velocity and stress fields are jagged
around the singular point. Again, there is good agreement between the computed eigenfunctions and Graham’s results.

Our numerics did not identify eigenfunctions of the type obtained analytically by Kupferman [11]: in that case, velocity
components are identically zero and stress components consist of deltas, and its first and second derivatives.

5. Final remarks

This work presents a finite element formulation for the problem of linear stability analysis of a plane Couette flow of an
UCM liquid. The computed eigenspectrum provides a better approximation of the continuous part of the spectrum than the
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available computations making use of the streamfunction formulation and spectral methods. The computed eigenfunctions
approximate well the analytical solutions derived by Graham [10].

The stability problem reduces to the solution of a generalized eigenvalue problem. We introduce a method to eliminate all
the eigenvalues at infinity. The algorithm gives rise to an equivalent reduced GEVP with non-singular matrices, whose
dimension is approximately 1=5 of the original one. The finite part of the spectrum of both GEVP’s is equal. The main advan-
tages of the new method are


 Eigenvalues at infinity are eliminated without either mapping or preconditioning techniques, which are computationally
expensive.


 Without performing approximations, the dimension of the eingenproblem is divided by five.

 The reduced GEVP is non-singular and sparse and may be rewritten as a genuine EVP.

Such features decrease significantly the computational cost of the evaluation of the eigenspectrum of an incompressible
viscoelastic flow. In the example presented, the method was 50 times faster than the numerical solution of the original GEVP.
The method takes advantage of the structure of the matrices, which is a function of the relationship between governing
equations and variables, and it is completely independent of the discretization method. The fact that the problem used as
a test here is a unidirectional flow does not bring any particularity to the structure of the Jacobian and Mass matrices, which
would be very similar for a two-dimensional flow.
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